《心是莲花》缘起
心是莲花是由居士自发组织建立的一个佛学平台。
《莲心论坛》交流
论坛事务区》 《莲心佛音区
莲心研修区》 《莲心红尘区
佛教人物
高僧|法师 大德|居士
信仰
菩萨信仰 诸佛信仰
您所在的当前位置:主页 >> 英语佛教 >> Introduction >>

Zeno and Naagaarjuna on motion(10)

分享到:

     process of subdivision is then repeated, so that each
     phase  of  the  k.sana  itself   consists   of  three
     subphases, giving in all nine subphases. But here the
     process  of  division   ends,  the  subphases   being
     considered  partless  and indivisible, that is, tempo
     ral minims.  Thus  the subphase  can be considered  a
     true atom of time, since it exists  outside  the flow
     of time, in the manner of Whitehead's epochs.(ll)
      The natures of these atomisms  in pre-Maadhyamika
     Indian  thought  have  two  important   implications.
     First, they  imply  acceptance  of the  principle  of
     discontinuity  as it applies to our notions  of space
     and time.  This  is just what  it means  to speak  of
     minims   of  space   (paramaa.nu)  and  time  (k.sana
     subphase).  That there can be a least possible length
     and a least po ssible  duration  means that space and
     time are not continuous but rather discontinuous--for
     example, time does not flow  like an electric  clock,
     but rather it jumps like a hand-wound clock.  This is
     an  inescapable   consequence   of  saying  that  the
     paramaa.nu is of definite- but indivisible extension,
     and  that  the  k.sana  subphase  is of definite  but
     indivisible duration.
      The second implication  of these atomisms is that
     their proponents  implicitly  accepted  the notion of
     spatiotemporal  continuity.  It is one  thing  to say
     that the atoms  of space or time are indivisible  and
     partless;  it is quite  another  to say that they are
     dimensionless  and nonadditive.  The former assertion
     might  be seen  as a counter  to the argument  of the
     opponent of atomism that since a


              p.288

     physical  atom  is of  definite  extension.  it  must
     itself be divisible and so consist of parts.  To this
     the atomist replies by arbitrarily  establishing  the
     measure of the atom as the least possible  extension.
     But  the  second   assertion.   that   the  atom   is
     dimensionless  and  nonadditive.  goes  too  far.  It
     implicitly  accepts the opponent's thesis of infinite
     divisibility.   The   property   of   nonadditiveness
     properly applies only to true geometrical points on a
     line.  And with this notion  comes  as well  the idea
     that between  any two points  on a line there  are an
     infinite  number  of  points;  that   is,   the  line