《心是莲花》缘起
心是莲花是由居士自发组织建立的一个佛学平台。
《莲心论坛》交流
论坛事务区》 《莲心佛音区
莲心研修区》 《莲心红尘区
佛教人物
高僧|法师 大德|居士
信仰
菩萨信仰 诸佛信仰
您所在的当前位置:主页 >> 英语佛教 >> Introduction >>

Zeno and Naagaarjuna on motion(5)

分享到:


              p.284

     instants  together  to achieve a duration;  no matter
     how many such instants  are added together, their sum
     will always be zero.
      The  paradox  of the Stadium  is for  the  modern
     reader  the  most  baffling  of  the  four,  and  our
     interpretation,   which   follows,   differs   from
     Brumbaugh's.  We agree  with  him, however, that this
     puzzle   assumes   both   space   and   time   to  be
     discrete--composed of minims.

    

     The fourth argument  is that concerning  the two rows
     of bodies, each row being composed of an equal number
     of bodies  of equal  size, passing  each  other  on a
     race-course  as they proceed  with equal velocity  in
     opposite directions, the one row originally occupying
     the space between  the goal and the middle  point  of
     the  course  and the other  that  between  the middle
     point   and  the  starting-post.   This,  he  thinks,
     involves  the conclusion  that  half a given  time is
     equal to double that time.(7)

     Assume  for the moment  that we are speaking, as Zeno
     originally  did,  of  bodies  rather  than  chariots,
     Assume  a  stationary  body  (A) divided  into  three
     sections, each section  being one minim long.  Assume
     two more such bodies, one (B) traveling past (A) from
     left to right  at a certain  velocity, the other  (C)
     traveling  past (A) in the opposite direction  at the
     same speed.

    

     Let (B) be passing (A) at a velocity  of one minim of
     space  per  minim  of time.  Then  in the  time  (one
     temporal minim) in which the front edge of (B) passes
     one minim of (A), the front edge of (C) will pass two
     minims  of (B), and in doing so the front edge of (C)
     will pass one minim  of (B) in half a minim  of time,
     which is impossible, since the minim is by definition
     indivisible.
      This puzzle  would work just as well looked at in
     another  way.  If we say that the second moving  body
     (B) is passing the first (A) at the slowest  possible
     speed, that is, one minim of space per minim of time,
     then in the same duration  in which the front edge of
     (B) passes  one minim  of (C), it (B) will  pass only
     half a minim  of (A), the stationary  body, which  is
     impossible,   since,  once   again,  the   minim   is