《心是莲花》缘起
心是莲花是由居士自发组织建立的一个佛学平台。
《莲心论坛》交流
论坛事务区》 《莲心佛音区
莲心研修区》 《莲心红尘区
佛教人物
高僧|法师 大德|居士
信仰
菩萨信仰 诸佛信仰
您所在的当前位置:主页 >> 英语佛教 >> Introduction >>

Zeno and Naagaarjuna on motion(4)

分享到:

     the ground  that  that  which  is in locomotion  must
     arrive at the half-way stage before it arrives at the
     goal...(4)

     The problem  here is that the walker  is required  to
     traverse  an infinite  series  of distances, which is
     impossible.  Since  time  is  discrete, in  order  to
     traverse  each of the distances  involved, the walker
     requires  at least one minim of time.  Therefore  the
     journey requires an infinite number of such minims of
     time, that  is, an infinite  duration, and  for  this
     reason it can never be completed.
      The paradox of Achilles  and the Tortoise assumes
     that space is discrete  and time continuous.  It goes
     as follows:

    

     The second is the so-called  Achilles, and it amounts
     to this, that in a race the quickest runner can never
     overtake  the slowest, since  the pursuer  must first
     reach the point whence  the pursued  started, so that
     the slower must always hold a lead.  This argument is
     the  same  in  principle  as that  which  depends  on
     bisection, though  it  differs  from  it in that  the
     spaces  with which  we successively  have to deal are
     not divided into halves.(5)

     In this  case, the difficulty  arises  from  the fact
     that there is an infinite  series of moments in which
     the tortoise is running. In each moment, the tortoise
     must traverse  at least one minim of space.  In order
     to overtake the tortoise, Achilles must traverse each
     spatial minim through which the tortoise  has passed.
     Therefore, Achilles  would have to travel an infinite
     distance  in order  to catch  the tortoise.  Like the
     Bisection  Paradox, this problem can be simply stated
     thus: one can never complete an infinite series.
      The  Arrow  Paradox, on the  other  hand, assumes
     both space and time to be continuous.

    

     The third is that already  given above, to the effect
     that  the  flying  arrow  is  at  rest, which  result
     follows from the assumption  that time is composed of
     moments: if  this  assumption  is  not  granted,  the
     conclusion will not follow.(6)

     Because  time  is infinitely  divisible, and  because
     moments  thus  have no duration, at any given  moment
     the arrow is standing  still in a space  equal to its
     length. Therefore, it is at every moment at rest, and
     thus it never moves.  Once again, the problem  can be
     simply   stated:  one   cannot   add   a  number   of
     dimensionless