《心是莲花》缘起
心是莲花是由居士自发组织建立的一个佛学平台。
《莲心论坛》交流
论坛事务区》 《莲心佛音区
莲心研修区》 《莲心红尘区
佛教人物
高僧|法师 大德|居士
信仰
菩萨信仰 诸佛信仰
您所在的当前位置:主页 >> 英语佛教 >> Introduction >>

Zeno and Naagaarjuna on motion(8)

分享到:

     with  nonbeing  (nonexistence), However, if we accept
     them, as Zeno apparently  did, then they do show that
     in a continuous universe, motion is impossible.
      Thus, on Eleatic  terms, no matter  what kind  of
     universe   we  suppose-continuous   or  additive   no
     intelligible  account  of motion  can  be  given, and
     therefore  motion  is impossible. Although  this  and
     other  of  their  conclusions   never  achieved  wide
     acceptance, their arguments  had enormous  influence,
     establishing  the rationalist tradition in philosophy
     which survives until today.
      Before  we proceed  to  a direct  examination  of
     Naagaarjuna's  arguments  against  motion, we  should
     like  to  say  a  few  words  about   the  historical
     background   behind   the   writing   of   the
     Muula-maadhyamika-kaarika   (MMK) ,  with  particular
     reference to Indian notions of space and time.  While
     far less is known  about ancient  Indian  mathematics
     and physics  than is known about their ancient  Greek
     counterparts, it is still possible  to discern  a few
     significant tendencies. And these, it turns out, bear
     remarkable resemblances to developments in Greece, It
     is known, for instance, that the 'Sulba geometers  of
     perhaps  the fifth  or sixth century  B.C, discovered
     the incommensurability  of the  diagonal  of a square
     with its sides.(8) Having  done so, they then devised
     a means  for  computing  an approximate  value  of ?
     Significantly, however, this was perceived as no more
     than an approximation, This suggests  that  they were
     aware  that  ?  is  irrational,  that  is, that  its
     precise value can never be given with a finite string
     of numerals;  and from here it is but a short step to
     the  notion  of  a  number  continuum.  That  is, the
     mathematician   who  knows   of  the   existence   of
     irrationals  should  soon come to see that there  are
     infinitely  many numbers  between any two consecutive
     integers, And with this realization  comes the notion
     of infinite  divisibility, While  we cannot  say  for
     certain  that the 'Sulba geometers  were consc iously
     aware  of  infinite  divisibility,  developments   in
     Indian  physics  require  some source for the notion,
     and the sophistication  of the 'Sulba school makes it
     seem the likeliest place to look, The developments to
     which  we refer  are  the  emergence  of the  curious