《心是莲花》缘起
心是莲花是由居士自发组织建立的一个佛学平台。
《莲心论坛》交流
论坛事务区》 《莲心佛音区
莲心研修区》 《莲心红尘区
佛教人物
高僧|法师 大德|居士
信仰
菩萨信仰 诸佛信仰
您所在的当前位置:主页 >> 英语佛教 >> Introduction >>

Zeno and Naagaarjuna on motion(21)

分享到:

     Naarabhyate gamyamaane gantumaarabhyate kuha.

     Na puurva^m gamanaarambhaad gamyamaana^m na vaa gata^m
     yatraarabhyeta gamanamagate gamana^m kuta.h.

     Going  is not commenced  at the gone-to, nor is going
      commenced  in the not-yet-gone-to;
     It  is not  begun  in  present-being-gone-to;  where,
      then. is going commenced?

     Present-being-gone-to  does  not exist  prior  to the
      commencement  of going, nor is there a gone-to
     Where going should begin; how can there be a going in
      the not-yet-gone-to?

     The "mathematical"  interpretation  of this  argument
     assumes  infinitely  divisible  time, or  a  temporal
     continuum. No special assumptions about the nature of
     space  are required, so that  space  may be taken  as
     either continuous or discontinuous.  The argument may
     thus  be taken  to correspond  in function  to either
     Zeno's  Arrow Paradox  or to the Paradox  of Achilles
     and  the Tortoise.  Assume  an individual, Devadatta,
     who during the interval  t[0]-t[1]  is standing  at a
     given location, and at some time during  the interval
     t[1]-t[2]  leaves  that  location.  Then assume  that
     there  is some  time t[x]  contained  in the interval
     t[1]-t[2], subsequent to which Devadatta is going. We
     may  now ask  when  Devadatta  commenced  to go.  The
     interval   t[0]-t[x]   exhaustively   describes   the
     duration of Devadatta's  not-going.  And the interval
     t[x]-t[2]  exhaustively  describes  the  duration  of
     Devadatta's  going for the period  that concerns  us.
     Then  since  (t[0]-t[x])  +  (t[x]-t[2])  covers  the
     entire  duration  of the  analysis, we must  conclude
     that at no time does Devadatta  actually commence  to
     go,  that  is,  at  no  time  does  the  activity  of
     commencing to go take place. Similarly, where i is an
     infinitesimal  increment  in  duration  (that  is,  a
     k.sana subphase), then for any n, (t[1] + n.i ) t[x]  Therefore  at no time  does  the
     commencement of going take place.
      The "conceptual" interpretation  of this argument
     goes  as follows: The  gone-to, the  not-yet-gone-to,
     and  present-being-gone-to, as temporal  moments, are
     not   naturally   occurring   existents,  but  rather
     conventional  entities  defined in relation to going.
     It is therefore  impossible  to designate these three
     moments  prior  to the commencement  of going.  It is
     impossible  to speak of going actually  taking place,