《心是莲花》缘起
心是莲花是由居士自发组织建立的一个佛学平台。
《莲心论坛》交流
论坛事务区》 《莲心佛音区
莲心研修区》 《莲心红尘区
佛教人物
高僧|法师 大德|居士
信仰
菩萨信仰 诸佛信仰
您所在的当前位置:主页 >> 英语佛教 >> Introduction >>

Zeno and Naagaarjuna on motion(15)

分享到:

     gamyamaane dvigamana^m yadaa naivopapadyate

     How will there occur a going of present-being-gone-to
     When  there  never  obtains  a  double   going   of
     present-being-gone-to?


              p.291

     On this reading the argument  is against the model of
     motion  which  assumes  that both time and space  are
     discontinuous;  thus it parallels  in function Zeno's
     paradox   of  the  Stadium.   Suppose  that  time  is
     constituted  of indivisible minims of duration d, and
     space is constituted of indivisible  minims of length
     s.  Now suppose three adjacent minims of space, A, B,
     and C, and suppose  that  an object  of length  1s at
     time  t[0] occupies  A and at time  t[1] occupies  C.
     such that the interval t[0]-t[1] is 1d. Now since the
     object  has been displaced  two minims of space, that
     is.  2s, this means that its displacement velocity is
     v=2s/d. For the object to go from A to C, however, it
     is clearly necessary  that it traverse  B, and so the
     question naturally arises, When did the object occupy
     minim B? Since displacement A-B is 1s, by our formula
     we conclude that the object occupied B at t[0] +1/2d.
     This result  is clearly  impossible, however, since d
     is posited  as an indivisible  unit of time.  And yet
     the notion  that the object  went from A to C without
     traversing  B is unacceptable.  In order to reconcile
     theory  with fact, we might posit an imaginary  going
     whereby  the  object  goes  from  A through  B to  C,
     alongside  the orthodox  interpretation  whereby  the
     object goes directly  from A to C without  traversing
     B.  This model requires two separate goings, however,
     and that  is clearly  absurd.  Thus  we must conclude
     that  there  is no  going  of  present-being-gone-to,
     since  the requisite  notion  of an extended  present
     leads to absurdity.
      If we accept  Teramoto's  or May's  reading, then
     II.3 becomes:

     Then   how   will   there   obtain   a   going   of
     present-being-gone-to,
     Since   there   never   obtains   a   nongoing   of
     present-being-gone-to?

     This may be taken as an argument against the model of
     motion  which  presupposes  discontinuous  time but a
     spatial continuum.  Suppose  that time is constituted
     of indivisible minims of duration d, Now suppose that
     a point  is moving  along  a line a-c at such  a rate