《心是莲花》缘起
心是莲花是由居士自发组织建立的一个佛学平台。
《莲心论坛》交流
论坛事务区》 《莲心佛音区
莲心研修区》 《莲心红尘区
佛教人物
高僧|法师 大德|居士
信仰
菩萨信仰 诸佛信仰
您所在的当前位置:主页 >> 英语佛教 >> Introduction >>

Zeno and Naagaarjuna on motion(23)

分享到:

     unable  to locate  real motion, one will likewise  be
     unable   to   discern   a   gone-to   and
     present-being-gone-to.  This  means, however, that we
     will never succeed in designating  a commencement  of
     going. Naagaarjuna summarizes the results of II:12-13
     in verse 14:

     Gata^m ki^m gamyamaana^m kimagata^m ki^m vikalpyate
     ad.r'syamaana aarambhe gamanasyaiva sarvathaa.

     The   gone-to   present-being-gone-to,   the
      not-yet-gone-to, all are mentally
     The beginning of going not being seen in any way.

      In the  remaining  verses  of Chapter  II (15-25)
     Naagaajuna  continues  his task of refuting motion by
     defeating  various formulations  designed to show how
     real motion is to be analyzed.  Thus, for example, in
     II:15 the opponent argues for the existence of motion
     from the existence  of rest;  that is, since  the two
     notions  are relative, if the one has real reference,
     the other must also.  In particular we may speak of a
     goer ceasing to go. As Naagaarjuna shows in II:15-17,
     however, the designation  of this  abiding   goer  is
     even more difficult  than  the designation  of a goer
     who  actually   goes.   There   are  also   arguments
     concerning the relationship between goer and activity
     of going, and the relationship  between goer and that
     which is to be gone-to.  None of these introduces any
     new style  of argumentation, however;  all seem to be
     variations   on   objections   already   raised.   In
     particular, none of the arguments  presented in these
     verses   is   susceptible   to   a   "mathematical
     Interpretation.  Thus we shall bring our analysis  of
     MMK II to a close here, merely noting in passing that
     where Zeno has four Paradoxes, one designed to refute
     each permutation of the ramified


              p.297

     Pythagorean   spatiotemporal   analysis,   we   have
     succeeded in uncovering  only three such arguments in
     Naagaarjuna.  The 'first  (II: 1) covers  the case of
     infinitely  divisible space and infinitely  divisible
     time;  the  third  (II.12-13) deals  with  infinitely
     divisible  time, and  thus  covers  the two cases  of
     discontinuous  space and infinitely  divisible  time,
     and  continuous  or infinitely  divisible  space  and
     infinitely  divisible time (already covered by II:1).